The determination of antibody to hepatitis B core antigen (HBcAb) has become an important means of evaluating the risk factors of de novo hepatitis B virus (HBV) infection before starting intensive immunosuppressive drug therapies. Four dominant HBcAb determination reagents used in Japan were evaluated with HBcIgM, HBsAg, HBsAb, HBeAb, and HBV DNA reagents in order to study their clinical utility. Four kinds of HBcAb reagent kits (HBcAb Total and HBcAb-IgG reagent) were evaluated with 526 clinical specimens, including 344 negative specimens, at Osaka University Hospital. The dynamic range of each kit was evaluated by testing serially diluted serum from pooled sera with high HBcAb concentration. The reagent that showed the largest dynamic range was the Lumipulse HBcAb-N (HBcAb-IgG reagent). Regarding clinical sensitivity and specificity, Centaur HBcAb (HBcAb Total reagent) gave several "doubtful negative" results and ARCHITECT HBcII (HBcAb Total reagent) had the most discrepant positive results. By comparing the cut-off-index distribution of negative specimens using a parameter of "distance from the mean to the cut-off divided by the SD", Centaur was determined to be the best (distance/SD = 12.65), with Lumipulse and Elecsys Anti-HBc (HBcAb Total reagent) in the second group (8.13 and 7.00, respectively), and ARCHITECT rated as the worst (3.25). In this evaluation, Elecsys and Lumipulse HBcAb kits showed good clinical sensitivity and specificity and were considered to be suitable for evaluating the risk factors of de novo HBV infection.
Teen Alice New Star With Horses-6l
DOWNLOAD: https://tinurll.com/2vCUS8
At a distance of about only 100pc, Mira AB is the nearest symbiotic system containing an Asymptotic Giant Branch (AGB) star (Mira A), and a compact accreting companion (Mira B) at about 0.5" from Mira A. Symbiotic systems are interacting binaries with a key evolutionary importance as potential progenitors of a fraction of asymmetric Planetary Nebulae, and SN type Ia, cosmological distance indicators. The region of interaction has been studied using high-angular resolution, multiwavelength observations ranging from radio to X-ray wavelengths. Our results, including high-angular resolution Chandra imaging, show a "bridge" between Mira A and Mira B, indicating gravitational focusing of the Mira A wind, whereby components exchange matter directly in addition to the wind accretion. We carried out a study using 2-D hydrodynamical models of focused wind mass accretion to determine the region of wind acceleration and the characteristics of the accretion in Mira AB. We highlight some of our results and discuss the impact on our understanding of accretion processes in symbiotic systems and other detached and semidetached interacting systems.
Research team PRSM reports astrometric measurements of the double star system WDS 15379+3006 (STF 1963AB, STF 1963AC) obtained using the iTelescope Network. By performing CCD astrometry, the team determined a position angle of 298.4 0.1 with an angular separation of 05. 28" 0.1" for STF 1963AB, and a position angle of 116.1 0.1 with an angular separation of 32.35" 0.1" for STF 1963AC. The angular separation and position angle have changed from previous measurements.
The ESX-1 secretion system exports the immunomodulatory protein ESAT-6 and other proteins important in the pathogenesis of Mycobacterium tuberculosis. Components and substrates of ESX-1 are encoded at several loci, but the regulation of the encoding genes is only partially understood. In this study, we investigated the role of the MprAB two-component system in the regulation of ESX-1 activity. We determined that MprAB directly regulates the espA gene cluster, a locus necessary for ESX-1 function. Transcript mapping determined that the five genes in the cluster form an operon with two transcriptional start points, and several MprA binding sites were detected in the espA promoter. Expression analyses and promoter constructs indicated that MprAB represses the espA operon. However, the MprAB mutant Rv-D981 secreted lower levels of EspA, ESAT-6, and the ESX-1 substrate EspB than control strains. Secretion of CFP10, which is normally cosecreted with ESAT-6, was similar in Rv-D981 and control strains, further demonstrating aberrant ESX-1 activity in the mutant. ESAT-6 induces proinflammatory cytokines, and macrophages infected with Rv-D981 elicited lower levels of interleukin 1β (IL-1β) and tumor necrosis factor alpha (TNF-α), consistent with the reduced levels of ESAT-6. These findings indicate that MprAB modulates ESX-1 function and reveal a new role for MprAB in host-pathogen interactions.
We report submilliarsecond-precise astrometric measurement for the late-type star AB Doradus via a combination of VLBI (very long baseline interferometry) and Hipparos satellite data. Our astrometric analysis results in the precise determination of the kinematics of this star, that reveals an orbital motion readily explained as caused by the gravitational interaction with a low-mass companion.
Reconstruction of complex structures is an inverse problem arising in virtually all areas of science and technology, from protein structure determination to bulk heterostructure solar cells and the structure of nanoparticles. This problem is cast as a complex network problem where the edges in a network have weights equal to the Euclidean distance between their endpoints. A method, called Tribond, for the reconstruction of the locations of the nodes of the network given only the edge weights of the Euclidean network is presented. The timing results indicate that the algorithm is a low order polynomial in the number of nodes in the network in two dimensions. Reconstruction of Euclidean networks in two dimensions of about one thousand nodes in approximately twenty four hours on a desktop computer using this implementation is done. In three dimensions, the computational cost for the reconstruction is a higher order polynomial in the number of nodes and reconstruction of small Euclidean networks in three dimensions is shown. If a starting network of size five is assumed to be given, then for a network of size 100, the remaining reconstruction can be done in about two hours on a desktop computer. In situations when we have less precise data, modifications of the method may be necessary and are discussed. A related problem in one dimension known as the Optimal Golomb ruler (OGR) is also studied. A statistical physics Hamiltonian to describe the OGR problem is introduced and the first order phase transition from a symmetric low constraint phase to a complex symmetry broken phase at high constraint is studied. Despite the fact that the Hamiltonian is not disordered, the asymmetric phase is highly irregular with geometric frustration. The phase diagram is obtained and it is seen that even at a very low temperature T there is a phase transition at finite and non-zero value of the constraint parameter gamma/mu. Analytic calculations for the scaling of the density and free
The AB Dor Moving Group consists of a "nucleus" of 10 stars at d = 20 pc, along with dozens of purported "stream" members distributed across the sky. We perform a chemical and kinematic analysis of a subsample of AB Dor stream stars to test whether they constitute a physical stellar group. We use the NEMO Galactic kinematic code to investigate the orbits of the stream members, and perform a chemical abundance analysis using high resolution spectra taken with the Magellan Clay 6.5 m telescope. Using a χ2 test with the measured abundances for 10 different elements, we find that only half of the purported AB Dor stream members could possibly constitute a statistically chemically homogeneous sample. Some stream members with three-dimensional velocities were hundreds of parsecs from the AB Dor nucleus 108 yr ago, and hence were unlikely to share a common origin. We conclude that the published lists of AB Dor moving group stream members are unlikely to represent the dispersed remnant of a single star formation episode. A subsample of the stream stars appears to be both statistically chemically homogeneous and in the vicinity of the AB Dor nucleus at birth. Their mean metallicity is [Fe/H] = 0.02 0.02 dex, which we consider representative for the AB Dor group. Finally, we report a strong lower limit on the age of the AB Dor nucleus of >110 Myr based on the pre-main sequence contraction times for K-type members which have reached the main sequence.
Iterative projection algorithms are proposed as a tool for ab initio phasing in virus crystallography. The good global convergence properties of these algorithms, coupled with the spherical shape and high structural redundancy of icosahedral viruses, allows high resolution phases to be determined with no initial phase information. This approach is demonstrated by determining the electron density of a virus crystal with 5-fold non-crystallographic symmetry, starting with only a spherical shell envelope. The electron density obtained is sufficiently accurate for model building. The results indicate that iterative projection algorithms should be routinely applicable in virus crystallography, without the need for ancillary phase information. Copyright 2016 Elsevier Inc. All rights reserved.
The AB Dor Moving Group consists of a 'nucleus' of approx10 stars at d approx_equal 20 pc, along with dozens of purported 'stream' members distributed across the sky. We perform a chemical and kinematic analysis of a subsample of AB Dor stream stars to test whether they constitute a physical stellar group. We use the NEMO Galactic kinematic code to investigate the orbits of the stream members, and perform a chemical abundance analysis using high resolution spectra taken with the Magellan Clay 6.5 m telescope. Using a chisup 2 test with the measured abundances for 10 different elements, we findmore that only half of the purported AB Dor stream members could possibly constitute a statistically chemically homogeneous sample. Some stream members with three-dimensional velocities were hundreds of parsecs from the AB Dor nucleus approx10sup 8 yr ago, and hence were unlikely to share a common origin. We conclude that the published lists of AB Dor moving group stream members are unlikely to represent the dispersed remnant of a single star formation episode. A subsample of the stream stars appears to be both statistically chemically homogeneous and in the vicinity of the AB Dor nucleus at birth. Their mean metallicity is [Fe/H] = 0.02 +- 0.02 dex, which we consider representative for the AB Dor group. Finally, we report a strong lower limit on the age of the AB Dor nucleus of >110 Myr based on the pre-main sequence contraction times for K-type members which have reached the main sequence. less 2ff7e9595c
Komentáre